PC40S

Unit 1: Unit Circle

Formula Sheet

Unit Circle Equation

$$x^2 + y^2 = 1$$

All points \((x, y)\) on the unit circle satisfy this equation. The radius is always 1.

Degrees & Radians

  • $$360^\circ = 2\pi \text{ radians}$$
  • $$1^\circ = \frac{\pi}{180} \text{ radians}$$
  • $$1 \text{ radian} = \frac{180^\circ}{\pi}$$

Key Angles on the Unit Circle

Angle Radians sin θ cos θ tan θ
\(0°\) \(0\) \(0\) \(1\) \(0\)
\(30°\) \(π/6\) \(1/2\) \(\sqrt{3}/2\) \(1/\sqrt{3}\)
\(45°\) \(π/4\) \(\sqrt{2}/2\) \(\sqrt{2}/2\) \(1\)
\(60°\) \(π/3\) \(\sqrt{3}/2\) \(1/2\) \(\sqrt{3}\)
\(90°\) \(π/2\) \(1\) \(0\) undefined

Pythagorean Identity

$$\sin^2\theta + \cos^2\theta = 1$$

Basic Trig Functions

  • $$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
  • $$\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
  • $$\tan\theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sin\theta}{\cos\theta}$$

Reference Angles & Signs

  • Reference angle: The acute angle formed with the \(x\)-axis.
  • Signs: All Students Take Calculus (ASTC) mnemonic:
    • All trig functions positive in Quadrant \(I\)
    • Sine & Cosecant positive in Quadrant \(II\)
    • Tangent & Cotangent positive in Quadrant \(III\)
    • Cosine & Secant positive in Quadrant \(IV\)

Arc Length Formulas

  • Angle in degrees: $$\ell = \frac{\theta}{360^\circ} \cdot 2\pi r$$
  • Angle in radians: $$\ell = r\theta$$

Coterminal Angles

  • Degrees: $$\theta + 360^\circ \times k$$
  • Radians: $$\theta + 2\pi k$$
  • where \(k\) is any integer

Even-Odd & Symmetry Identities

  • $$\sin(-\theta) = -\sin\theta$$
  • $$\cos(-\theta) = \cos\theta$$
  • $$\tan(-\theta) = -\tan\theta$$