Radical Functions
Parent Functions:- Square root: \(y = \sqrt{x}\) | Domain: \(x \geq 0\), Range: \(y \geq 0\)
- Cube root: \(y = \sqrt[3]{x}\) | Domain: all real, Range: all real
- \(y = a \sqrt{b(x + c)} + d\) or \(y = a \sqrt[3]{b(x + c)} + d\)
- a: vertical stretch/compression, reflect over \(x\)-axis if negative
- b: horizontal stretch/compression, reflect over \(y\)-axis if negative
- c: horizontal shift, left if \(+c\), right if \(-c\)
- d: vertical shift, up if \(+d\), down if \(-d\)
Original \((x, y)\) \(\to\) \((x / b - c,\ a y + d)\)
Square Root of a Function
- \(y = \sqrt{f(x)}\)
- Domain: x such that \(f(x) \geq 0\)
- Range: \(\sqrt{\text{y-values of } f(x)}\) where y \(\geq 0\)
- Invariant points: solve \(f(x) = \sqrt{f(x)}\) \(\to\) \(f(x) = 0\) or \(f(x) = 1\)
Radical Equations
Steps to Solve:- Isolate the radical
- Raise both sides to the appropriate power
- Solve the resulting equation
- Check all solutions in the original, discard extraneous
- Plot \(y = \sqrt{f(x)}\) and the other side, find \(x\)-intercepts
Rational Functions
Definition:- \(R(x) = \frac{P(x)}{Q(x)}\), P and Q polynomials
- Domain: x such that \(Q(x) \neq 0\)
- \(x\)-values making denominator \(0\)
- Causes vertical asymptotes or holes
- Vertical asymptote if factor in denominator not cancelled
- Hole if factor cancels with numerator, coordinate from simplified function
- Compare degrees: numerator \(n\), denominator \(m\)
- \(n < m\): HA \(y = 0\)
- \(n = m\): HA \(y =\) leading coeff of \(P\) / leading coeff of \(Q\)
- \(n = m + 1\): slant asymptote (use division)
- \(n > m + 1\): no HA, end behavior follows polynomial division
Transformations of Rational Functions
General Form:- \(y = a \frac{P(b(x + c))}{Q(b(x + c))} + d\)
Original (x, y) \(\to\) \((x / b - c,\ a y + d)\)
Graphing Steps:
- Factor numerator and denominator completely
- Identify domain and non-permissible values
- Cancel common factors to reveal holes
- Find vertical asymptotes from remaining denominator zeros
- Determine horizontal or slant asymptotes
- Find x-intercepts (zeros of numerator) and y-intercept (evaluate at x=0 if allowed)
- Plot key points including invariant points, sketch curve approaching asymptotes
Common Patterns
- \(\sqrt{x}\): Domain \(x \geq 0\), Range \(y \geq 0\), points \((0,0)\), \((1,1)\), \((4,2)\)
- \(\sqrt[3]{x}\): Domain all real, Range all real, points \((0,0)\), \((1,1)\), \((−1,−1)\)
- \(\frac{1}{x}\): Domain \(x \neq 0\), Range \(y \neq 0\), points \((1,1)\), \((−1,−1)\), VA \(x=0\), HA \(y=0\)
- \(a\sqrt{x-c}+d\): Domain \(x \geq c\), Range \(y \geq d\), end point \((c,d)\)
- \(\frac{P(x)}{Q(x)}\): Domain \(x\) ≠ non-permissible, zeros from numerator, use asymptotes to guide sketch
Transformations Summary
- Vertical multiply \(a\) → stretch/compress, reflect \(x\)-axis if negative
- Horizontal multiply \(b\) → stretch/compress, reflect \(y\)-axis if negative
- Horizontal shift \(c\) → left \(+c\), right \(-c\)
- Vertical shift \(d\) → up \(+d\), down \(-d\)
- Map \(2–3\) key points using \((x / b - c, a y + d)\) to check