Factorials & Basic Facts
- Definition: \( n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \), for \( n \geq 1 \).
- Convention: \( 0! = 1 \).
- Fast cancellations: \( \frac{(n+2)!}{n!} = (n+2)(n+1) \), \( \frac{n!}{(n-2)!} = n(n-1) \).
Counting Principle
- If Task A has \( m \) ways and for each, Task B has \( n \) ways, then A then B has \( m \cdot n \) ways.
- Extend by multiplication for more steps.
Permutations vs Combinations
| Feature | Permutation | Combination |
|---|---|---|
| Order matters? | Yes | No |
| Formula | \( P(n, k) = \frac{n!}{(n-k)!} \) | \( C(n, k) = \frac{n!}{k!(n-k)!} \) |
| Example | \( P(4,3) = 24 \) | \( C(5,2) = 10 \) |
| Relation | \( P(n,k) = C(n,k) \cdot k! \) | |
| Symmetry | \( C(n,k) = C(n,n-k) \) | |
Useful Combinatorial Identities
- \( C(n,k) = C(n,n-k) \)
- Pascal: \( C(n,k) = C(n-1,k-1) + C(n-1,k) \)
- \( P(n,k) = C(n,k) \cdot k! \)
Quick Reference: Factorial Simplifications
- \( \frac{(n+a)!}{n!} = (n+a)(n+a-1)\ldots(n+1) \)
- Cancel common factorial factors before expanding to simplify algebraic solving.
Arranging People/Objects in a Line
- No restrictions: \( n! \)
- Two together: \( (n-1)! \cdot 2 \)
- Three together: \( (n-2)! \cdot 3! \)
- Two NOT together: \( n! - (n-1)! \cdot 2 \)
- Alternating boys/girls (equal m): \( 2 \cdot m! \cdot m! \)
- Boy–girl couples (fixed): \( 5! \cdot 2^5 = 3,840 \)
- Boy–girl couples (any pairing): \( 5! \cdot 5! \cdot 2^5 = 460,800 \)
Block & Complement Techniques
- Block method: group required-adjacent persons as one “super-person”; multiply by internal arrangements.
- Complement method: count total arrangements then subtract arrangements that violate the restriction.
Solving Factorial, P, C Expressions
- Evaluate \( P \) and \( C \) by canceling factorials first.
- Examples: \( P(7,3)=210 \), \( C(8,3)=56 \).
Solving Equations with Factorials, P, C
- Reduce factorial ratios to a polynomial in \( n \); solve integer solutions.
- Example: \( C(n,2)=15 \Rightarrow n=6 \).
- Example: \( P(n,4)=840 \Rightarrow n=7 \).
- Example: \( \frac{(n+2)!}{n!}=56 \Rightarrow n=6 \).
Binomial Coefficients & Pascal’s Triangle
Pascal's Triangle (Rows
0–4)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
- Row \( n \) gives coefficients \( C(n,0), C(n,1), \ldots, C(n,n) \).
- Coefficients for \( (a+b)^n \) are row \( n \) of Pascal's triangle.
Binomial Theorem — Expansion Formula
- \( (a+b)^n = \sum_{k=0}^n C(n,k) a^{n-k} b^k \)
- General term: \( T_{k+1} = C(n,k) a^{n-k} b^k \)
- First term: \( k=0 \Rightarrow a^n \). Last term: \( k=n \Rightarrow b^n \).
Finding Particular Terms
- For \( (x+1)^n \): \( T_{k+1} = C(n,k) x^{n-k} \). Term with \( x^r \): \( k=n-r \).
- Coefficient of \( x^r \) is \( C(n, r) \).
- Constant term: \( r=0 \Rightarrow k=n \Rightarrow 1 \).
- For \( (x^p+x^q)^n \): exponent on \( x \) in \( T_{k+1} \): \( E = p(n-k) + qk \).
- For \( (x^3+x^2)^n \): \( E = 3n-k \). To find \( x^r \): \( k=3n-r \).
- Constant term: solve \( pn+k(q-p)=0 \).