PC40S

Unit 6: Permutations, Combinations &
Binomial Theorem

Formula Sheet

Factorials & Basic Facts

  • Definition: \( n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \), for \( n \geq 1 \).
  • Convention: \( 0! = 1 \).
  • Fast cancellations: \( \frac{(n+2)!}{n!} = (n+2)(n+1) \), \( \frac{n!}{(n-2)!} = n(n-1) \).

Counting Principle

  • If Task A has \( m \) ways and for each, Task B has \( n \) ways, then A then B has \( m \cdot n \) ways.
  • Extend by multiplication for more steps.

Permutations vs Combinations

Feature Permutation Combination
Order matters? Yes No
Formula \( P(n, k) = \frac{n!}{(n-k)!} \) \( C(n, k) = \frac{n!}{k!(n-k)!} \)
Example \( P(4,3) = 24 \) \( C(5,2) = 10 \)
Relation \( P(n,k) = C(n,k) \cdot k! \)
Symmetry \( C(n,k) = C(n,n-k) \)

Useful Combinatorial Identities

  • \( C(n,k) = C(n,n-k) \)
  • Pascal: \( C(n,k) = C(n-1,k-1) + C(n-1,k) \)
  • \( P(n,k) = C(n,k) \cdot k! \)

Quick Reference: Factorial Simplifications

  • \( \frac{(n+a)!}{n!} = (n+a)(n+a-1)\ldots(n+1) \)
  • Cancel common factorial factors before expanding to simplify algebraic solving.

Arranging People/Objects in a Line

  • No restrictions: \( n! \)
  • Two together: \( (n-1)! \cdot 2 \)
  • Three together: \( (n-2)! \cdot 3! \)
  • Two NOT together: \( n! - (n-1)! \cdot 2 \)
  • Alternating boys/girls (equal m): \( 2 \cdot m! \cdot m! \)
  • Boy–girl couples (fixed): \( 5! \cdot 2^5 = 3,840 \)
  • Boy–girl couples (any pairing): \( 5! \cdot 5! \cdot 2^5 = 460,800 \)

Block & Complement Techniques

  • Block method: group required-adjacent persons as one “super-person”; multiply by internal arrangements.
  • Complement method: count total arrangements then subtract arrangements that violate the restriction.

Solving Factorial, P, C Expressions

  • Evaluate \( P \) and \( C \) by canceling factorials first.
  • Examples: \( P(7,3)=210 \), \( C(8,3)=56 \).

Solving Equations with Factorials, P, C

  • Reduce factorial ratios to a polynomial in \( n \); solve integer solutions.
  • Example: \( C(n,2)=15 \Rightarrow n=6 \).
  • Example: \( P(n,4)=840 \Rightarrow n=7 \).
  • Example: \( \frac{(n+2)!}{n!}=56 \Rightarrow n=6 \).

Binomial Coefficients & Pascal’s Triangle

Pascal's Triangle (Rows 0–4)
       1       
     1   1     
    1   2   1    
  1   3   3   1  
1   4   6   4   1
  • Row \( n \) gives coefficients \( C(n,0), C(n,1), \ldots, C(n,n) \).
  • Coefficients for \( (a+b)^n \) are row \( n \) of Pascal's triangle.

Binomial Theorem — Expansion Formula

  • \( (a+b)^n = \sum_{k=0}^n C(n,k) a^{n-k} b^k \)
  • General term: \( T_{k+1} = C(n,k) a^{n-k} b^k \)
  • First term: \( k=0 \Rightarrow a^n \). Last term: \( k=n \Rightarrow b^n \).

Finding Particular Terms

  • For \( (x+1)^n \): \( T_{k+1} = C(n,k) x^{n-k} \). Term with \( x^r \): \( k=n-r \).
  • Coefficient of \( x^r \) is \( C(n, r) \).
  • Constant term: \( r=0 \Rightarrow k=n \Rightarrow 1 \).
  • For \( (x^p+x^q)^n \): exponent on \( x \) in \( T_{k+1} \): \( E = p(n-k) + qk \).
  • For \( (x^3+x^2)^n \): \( E = 3n-k \). To find \( x^r \): \( k=3n-r \).
  • Constant term: solve \( pn+k(q-p)=0 \).