PC40S

Unit 6: Permutations, Combinations &
Binomial Theorem

Overview

What are Factorials?

  • \( n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \), for \( n \geq 1 \).
  • Convention: \( 0! = 1 \).
  • Example: \( 5! = 120 \), \( 6! = 720 \).
  • Counts the number of ways to order \( n \) distinct objects.

Counting Principle

  • If task A can be done in \( m \) ways and for each, task B can be done in \( n \) ways, then A then B can be done in \( m \cdot n \) ways.
  • For several independent steps, multiply the number of options for each step.

Permutations vs Combinations

Feature Permutation Combination
Order matters? Yes No
Formula \( P(n, k) = \frac{n!}{(n-k)!} \) \( C(n, k) = \frac{n!}{k!(n-k)!} \)
Example 3-letter arrangements from 4: \( P(4,3) = 24 \) 2-person committees from 5: \( C(5,2) = 10 \)
Relation \( P(n,k) = C(n,k) \cdot k! \)

Key Formulas & Identities

  • \( n! \): arrangements of \( n \) distinct objects
  • \( P(n, k) = \frac{n!}{(n-k)!} \)
  • \( C(n, k) = \frac{n!}{k!(n-k)!} \)
  • Symmetry: \( C(n, k) = C(n, n-k) \)
  • Pascal identity: \( C(n, k) = C(n-1, k-1) + C(n-1, k) \)
  • Relation: \( P(n, k) = C(n, k) \cdot k! \)

Arranging People: Standard Cases

  • No restrictions: \( n! \) ways. Example: 6 people → \( 6! = 720 \).
  • Alternate seating (equal boys/girls): \( 2 \cdot m! \cdot m! \) ways. Example: 5 boys & 5 girls → \( 2 \cdot 5! \cdot 5! = 28,800 \).
  • Two together: \( (n-1)! \cdot 2 \). Example: 6 people, A & B together → \( 5! \cdot 2 = 240 \).
  • Three together: \( (n-2)! \cdot 3! \). Example: 6 people, A,B,C together → \( 4! \cdot 6 = 144 \).
  • Boy–girl couples (fixed): \( 5! \cdot 2^5 = 3,840 \).
  • Boy–girl couples (any pairing): \( 5! \cdot 5! \cdot 2^5 = 460,800 \).
  • Two not together: \( n! - (n-1)! \cdot 2 \). Example: 6 people, A & B not adjacent → \( 720 - 240 = 480 \).

Binomial Theorem & Pascal's Triangle

Pascal's Triangle (Rows 0–4)
       1       
     1   1     
    1   2   1    
  1   3   3   1  
1   4   6   4   1
  • Binomial coefficients: \( C(n, k) \) = entry in row \( n \), position \( k \).
  • Coefficients of \( (a+b)^n \) are row \( n \) of Pascal's triangle.

Binomial Theorem (Expansion Formula)

  • General: \( (a+b)^n = \sum_{k=0}^n C(n,k) a^{n-k} b^k \)
  • General term: \( T_{k+1} = C(n,k) a^{n-k} b^k \)
  • Example: \( (x+2)^3 = x^3 + 6x^2 + 12x + 8 \)

Finding Particular Terms & Degrees

  • General term in \( (x+1)^n \): \( T_{k+1} = C(n,k) x^{n-k} \)
  • Term with \( x^r \): set \( k = n-r \).
  • Example: coefficient of \( x^3 \) in \( (x+1)^5 \): \( k=2 \), coefficient = \( C(5,2) = 10 \).
  • Constant term: \( k=n \), coefficient = 1.
  • General term in \( (x^3+x^2)^n \): \( T_{k+1} = C(n,k) x^{3n-k} \)
  • To find \( x^r \): solve \( 3n-k = r \Rightarrow k=3n-r \).
  • Example: term with \( x^{10} \) in \( (x^3+x^2)^5 \): \( k=5 \), coefficient = \( C(5,5) = 1 \).