PC40S

Unit 7: Trigonometric Identities

Formula Sheet

Addition & Subtraction Formulas

  • \( \sin(A + B) = \sin A \cos B + \cos A \sin B \)
  • \( \sin(A - B) = \sin A \cos B - \cos A \sin B \)
  • \( \cos(A + B) = \cos A \cos B - \sin A \sin B \)
  • \( \cos(A - B) = \cos A \cos B + \sin A \sin B \)
  • \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \)
  • \( \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \)

Exact Values Using Identities

  • Break angle into sum/difference of special angles (\(30°\), \(45°\), \(60°\), \(90°\)).
  • Apply the correct identity and substitute known values.
  • Use ASTC rule to confirm the sign.
Example: \( \sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin45^\circ\cos30^\circ - \cos45^\circ\sin30^\circ \)

Special Angles (tan285°, cot285°)

  • Reduce using reference angle and quadrant.
  • \( \tan285^\circ = -\tan75^\circ \), \( \cot285^\circ = -\cot75^\circ \)

Expansion & Simplification

  • Use identities to condense into a single trig function.
  • \( \cos80^\circ \cos50^\circ + \sin80^\circ \sin50^\circ = \cos(80^\circ - 50^\circ) = \cos30^\circ \)

Radians

  • All formulas work in radians as well as degrees.
  • Conversion: degrees = radians \(× 180/π\).
  • Example: \(15° = π/12\), \(75° = 5π/12\).

Double-Angle Identities

  • \( \sin(2a) = 2\sin a \cos a \)
  • \( \cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a \)
  • \( \tan(2a) = \frac{2\tan a}{1 - \tan^2 a} \)

Using Identities in Problems

  • Apply double-angle or half-angle formulas as needed.
  • Example: If \( \cos48^\circ = M \), then \( \cos96^\circ = 2M^2 - 1 \).

Proof Strategy

  • Work with the more complex side.
  • Change to sine and cosine when stuck.
  • Use common denominators when adding/subtracting fractions.
  • Multiply by conjugates if useful.
  • Simplify step by step until both sides match.

Core Proof Tips

  • Start with the tougher side.
  • Use Pythagorean identity: \( \sin^2x + \cos^2x = 1 \).
  • Replace tan, cot, sec, csc with sin/cos.
  • Always check for restrictions (denominator \( \neq 0 \)).