PC40S

Unit 7: Trigonometric Identities

Overview

Addition & Subtraction Formulas

  • \( \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \)
  • \( \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \)
  • \( \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \)
Example: \( \sin(75^\circ) = \sin(45^\circ + 30^\circ) = \sin45^\circ\cos30^\circ + \cos45^\circ\sin30^\circ \)

Angle Addition & Subtraction Identities

  • Break the angle into a sum/difference of special angles (\(30°\), \(45°\), \(60°\), \(90°\)).
  • Write the expression using a trig identity.
  • Substitute known trig values and simplify.
  • Check the sign using the ASTC rule.
Example: \( \sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin45^\circ\cos30^\circ - \cos45^\circ\sin30^\circ \)

Step-by-Step: Finding Exact Values

  1. Choose a combination of known angles.
  2. Write the trig expression in the correct form.
  3. Apply the correct identity (sin, cos, or tan).
  4. Simplify using known values.
  5. Use ASTC to confirm the sign.
Example: \( \tan(75^\circ) = \frac{\tan45^\circ + \tan30^\circ}{1 - \tan45^\circ\tan30^\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \)

Reference Angles & Periodicity

  • Reduce angles using reference angles and periodicity.
  • Example: 285° = 360° - 75°, so it lies in Quadrant IV.
  • \( \tan285^\circ = -\tan75^\circ \), \( \cot285^\circ = -\cot75^\circ \)

Expanding & Simplifying Expressions

  • Condense trig expressions using formulas.
  • \( \cos80^\circ\cos50^\circ + \sin80^\circ\sin50^\circ = \cos(80^\circ - 50^\circ) = \cos30^\circ \)

Radians & Degree Conversion

  • Addition and subtraction formulas work in radians too.
  • Convert: degrees = radians \(× 180/π\).
  • Example: \(15° = π/12\), \(75° = 5π/12\).

Double-Angle Identities

  • Derived from addition formulas.
  • \( \sin(2a) = 2\sin a\cos a \)
  • \( \cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a \)

Special Problems & Connections

  • Sometimes trig values are connected using identities.
  • Example: If \( \cos48^\circ = M \), then \( \cos96^\circ = 2M^2 - 1 \) (double-angle identity).

Trigonometric Proofs

  1. Work with the more complicated side.
  2. Convert all functions to sine and cosine if possible.
  3. Use algebra skills: factoring, simplification.
  4. Combine fractions with common denominators.
  5. Multiply by conjugates if needed.
  6. Simplify until both sides match.

Proof Techniques Summary

  • Start with the tougher-looking side.
  • Use basic identities: \( \sin^2\theta + \cos^2\theta = 1 \).
  • Replace tan, cot, sec, csc with sin and cos if stuck.
  • Keep track of restrictions (denominators not zero).
  • Be patient — proofs often take multiple steps!