Combined formulas and key identities from Units 1 through 8.
Unit circle equation:
All points \((x,y)\) on the unit circle satisfy this equation. Radius \(= 1\).
$$\sin^2\theta + \cos^2\theta = 1$$
Master form: \(y = a\) · \(f(b(x + c)) + d\)
If \((x,y)\) is on \(y=f(x)\), then on \(y=a f(b(x+c))+d\) the corresponding point is:
\(x' = x/b - c\), \(y' = a y + d\)
Parent functions: \(y = \sqrt{x}\) (domain \(x ≥ 0\)) and \(y = \sqrt[3]{x})\) (all reals).
General transform: \(y = a \sqrt{b(x+c)} + d\)
\(R(x) = P(x)/Q(x)\). Domain excludes roots of \(Q\). Vertical asymptotes where denominator zeros remain after cancellation; holes where factors cancel.
Horizontal asymptotes depend on degrees of numerator/denominator.
General: \(y = a b^{kx} + d\). Domain: all reals. Horizontal asymptote: \(y = d\).
Definition: \(log_b(N)=e\) iff \(b^e=N\). Domain: \((0,∞)\). Properties: product, quotient, power, change of base.
\((a+b)^n = Σ_{k=0}^n C_{(n,k)} a^{n−k} b^k\)
Domain\((f+g)\)=Domain\((f)\) ∩ Domain\((g)\). For composition use { \(x\) in Domain\((g)\): \(g(x)\) in Domain\((f)\) }.