Full Formula Sheet — Units 1–8

Combined formulas and key identities from Units 1 through 8.

Unit 1 — Unit Circle

Unit circle equation:

$$x^2 + y^2 = 1$$

All points \((x,y)\) on the unit circle satisfy this equation. Radius \(= 1\).

Degrees & Radians

Key identities

$$\sin^2\theta + \cos^2\theta = 1$$

Basic trig functions

Unit 2 — Transformations & Mapping

Master form & parameters

Master form: \(y = a\) · \(f(b(x + c)) + d\)

Mapping rule

If \((x,y)\) is on \(y=f(x)\), then on \(y=a f(b(x+c))+d\) the corresponding point is:

\(x' = x/b - c\),   \(y' = a y + d\)

Unit 3 — Radicals & Rationals

Radical functions

Parent functions: \(y = \sqrt{x}\) (domain \(x ≥ 0\)) and \(y = \sqrt[3]{x})\) (all reals).

General transform: \(y = a \sqrt{b(x+c)} + d\)

Rational functions

\(R(x) = P(x)/Q(x)\). Domain excludes roots of \(Q\). Vertical asymptotes where denominator zeros remain after cancellation; holes where factors cancel.

Horizontal asymptotes depend on degrees of numerator/denominator.

Unit 4 — Exponents & Logarithms

Exponential functions

General: \(y = a b^{kx} + d\). Domain: all reals. Horizontal asymptote: \(y = d\).

Logarithms

Definition: \(log_b(N)=e\) iff \(b^e=N\). Domain: \((0,∞)\). Properties: product, quotient, power, change of base.

Unit 5 — Polynomial Functions

Core facts

Graphing checklist

  1. Factor, find zeros and multiplicities.
  2. Find \(y\)-intercept \(f(0)\).
  3. Sketch end behaviour and turning points \((≤ n−1)\).

Unit 6 — Permutations, Combinations & Binomial Theorem

Factorials & counting

Binomial theorem

\((a+b)^n = Σ_{k=0}^n C_{(n,k)} a^{n−k} b^k\)

Unit 7 — Trigonometric Identities

Addition & subtraction

Double-angle

Unit 8 — Functions

Notation & operations

Domains

Domain\((f+g)\)=Domain\((f)\) ∩ Domain\((g)\). For composition use { \(x\) in Domain\((g)\): \(g(x)\) in Domain\((f)\) }.