PC40S

Pre-Calculus 40S Provincial Exam

Explore quick concepts of all the units and resources for Provincial Exam

Unit 1:Unit Circle
Key Formulas & Concepts:
  • $\sin^{2}(\theta) + \cos^{2}(\theta) = 1$
  • $\tan(\theta) = \dfrac{\sin(\theta)}{\cos(\theta)}$
  • Radian–degree conversion: $\pi\ \text{rad} = 180^\circ$
  • Arc length: $s = r\theta$
Unit 2:Transformations
Key Formulas & Concepts:
  • Period of trig function: $P = \dfrac{2\pi}{|b|}$
  • Mapping rule: $(x, y) \to \big(\tfrac{x - h}{b},\ a\,y + k\big)$
  • Reciprocal: $y = \dfrac{1}{f(x)}$
  • Inverse reflection: across line $y = x$
Unit 3:Radicals & Rationals
Key Formulas & Concepts:
  • $a^{m/n} = \sqrt[n]{a^{m}}$
  • Product rule: $\sqrt{a}\cdot\sqrt{b} = \sqrt{a\cdot b}$
  • Quotient rule: $\dfrac{\sqrt{a}}{\sqrt{b}} = \sqrt{\dfrac{a}{b}}$
  • Rationalization: multiply by conjugate if denominator has two terms
Unit 4:Exponents & Logarithms
Key Formulas & Concepts:
  • $b^{x} = y \iff \log_{b}(y) = x$
  • $\log_{b}(MN) = \log_{b}M + \log_{b}N$
  • $\log_{b}\!\left(\dfrac{M}{N}\right) = \log_{b}M - \log_{b}N$
  • $\log_{b}(M^{k}) = k\,\log_{b}M$
  • Exponential growth: $y = a\,b^{t}$
Unit 5:Polynomials
Key Formulas & Concepts:
  • Remainder Theorem: $f(c) =$ remainder when divided by $(x - c)$
  • Factor Theorem: $(x - c)$ is a factor if $f(c) = 0$
  • Sum of zeros = $-\dfrac{\text{coeff of }x^{n-1}}{\text{coeff of }x^{n}}$
  • Polynomial form: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$
Unit 6:Permutations, Combinations & Binomial Theorem
Key Formulas & Concepts:
  • $P(n,r) = \dfrac{n!}{(n-r)!}$
  • $C(n,r) = \dfrac{n!}{r!(n-r)!}$
  • Binomial Theorem: $(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^{r}$
  • Specific term: $T_{r+1} = \binom{n}{r} a^{n-r} b^{r}$
Unit 7:Trigonometry Identities
Key Formulas & Concepts:
  • $\sin(A\pm B)=\sin A\cos B \pm \cos A\sin B$
  • $\cos(A\pm B)=\cos A\cos B \mp \sin A\sin B$
  • $\sin(2A)=2\sin A\cos A$
  • $\cos(2A)=\cos^{2}A-\sin^{2}A=1-2\sin^{2}A=2\cos^{2}A-1$
  • $\tan(2A)=\dfrac{2\tan A}{1-\tan^{2}A}$
Unit 8:Functions
Key Formulas & Concepts:
  • Function notation: $f(x)$ means “value of $f$ at $x$”
  • Inverse: $f^{-1}(x)$ satisfies $f(f^{-1}(x)) = x$
  • Composition: $(f\circ g)(x) = f(g(x))$
  • Average rate of change: $\dfrac{f(b)-f(a)}{b-a}$

Pre-Calculus Provincial exam past year exam papers link: Manitoba Education archives